skip to main content


Search for: All records

Creators/Authors contains: "Reaven, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background Evidence to guide type 2 diabetes treatment individualization is limited. We evaluated heterogeneous treatment effects (HTE) of intensive glycemic control in type 2 diabetes patients on major adverse cardiovascular events (MACE) in the Action to Control Cardiovascular Risk in Diabetes Study (ACCORD) and the Veterans Affairs Diabetes Trial (VADT). Methods Causal forests machine learning analysis was performed using pooled individual data from two randomized trials (n = 12,042) to identify HTE of intensive versus standard glycemic control on MACE in patients with type 2 diabetes. We used variable prioritization from causal forests to build a summary decision tree and examined the risk difference of MACE between treatment arms in the resulting subgroups. Results A summary decision tree used five variables (hemoglobin glycation index, estimated glomerular filtration rate, fasting glucose, age, and body mass index) to define eight subgroups in which risk differences of MACE ranged from − 5.1% (95% CI − 8.7, − 1.5) to 3.1% (95% CI 0.2, 6.0) (negative values represent lower MACE associated with intensive glycemic control). Intensive glycemic control was associated with lower MACE in pooled study data in subgroups with low (− 4.2% [95% CI − 8.1, − 1.0]), intermediate (− 5.1% [95% CI − 8.7, − 1.5]), and high (− 4.3% [95% CI − 7.7, − 1.0]) MACE rates with consistent directions of effect in ACCORD and VADT alone. Conclusions This data-driven analysis provides evidence supporting the diabetes treatment guideline recommendation of intensive glucose lowering in diabetes patients with low cardiovascular risk and additionally suggests potential benefits of intensive glycemic control in some individuals at higher cardiovascular risk. 
    more » « less
  2. Abstract Objective Modern healthcare data reflect massive multi-level and multi-scale information collected over many years. The majority of the existing phenotyping algorithms use case–control definitions of disease. This paper aims to study the time to disease onset and progression and identify the time-varying risk factors that drive them. Materials and Methods We developed an algorithmic approach to phenotyping the incidence of diseases by consolidating data sources from the UK Biobank (UKB), including primary care electronic health records (EHRs). We focused on defining events, event dates, and their censoring time, including relevant terms and existing phenotypes, excluding generic, rare, or semantically distant terms, forward-mapping terminology terms, and expert review. We applied our approach to phenotyping diabetes complications, including a composite cardiovascular disease (CVD) outcome, diabetic kidney disease (DKD), and diabetic retinopathy (DR), in the UKB study. Results We identified 49 049 participants with diabetes. Among them, 1023 had type 1 diabetes (T1D), and 40 193 had type 2 diabetes (T2D). A total of 23 833 diabetes subjects had linked primary care records. There were 3237, 3113, and 4922 patients with CVD, DKD, and DR events, respectively. The risk prediction performance for each outcome was assessed, and our results are consistent with the prediction area under the ROC (receiver operating characteristic) curve (AUC) of standard risk prediction models using cohort studies. Discussion and Conclusion Our publicly available pipeline and platform enable streamlined curation of incidence events, identification of time-varying risk factors underlying disease progression, and the definition of a relevant cohort for time-to-event analyses. These important steps need to be considered simultaneously to study disease progression. 
    more » « less
  3. Introduction Studies have reported that antidiabetic medications (ADMs) were associated with lower risk of dementia, but current findings are inconsistent. This study compared the risk of dementia onset in patients with type 2 diabetes (T2D) treated with sulfonylurea (SU) or thiazolidinedione (TZD) to patients with T2D treated with metformin (MET). Research design and methods This is a prospective observational study within a T2D population using electronic medical records from all sites of the Veterans Affairs Healthcare System. Patients with T2D who initiated ADM from January 1, 2001, to December 31, 2017, were aged ≥60 years at the initiation, and were dementia-free were identified. A SU monotherapy group, a TZD monotherapy group, and a control group (MET monotherapy) were assembled based on prescription records. Participants were required to take the assigned treatment for at least 1 year. The primary outcome was all-cause dementia, and the two secondary outcomes were Alzheimer’s disease and vascular dementia, defined by International Classification of Diseases (ICD), 9th Revision, or ICD, 10th Revision, codes. The risks of developing outcomes were compared using propensity score weighted Cox proportional hazard models. Results Among 559 106 eligible veterans (mean age 65.7 (SD 8.7) years), the all-cause dementia rate was 8.2 cases per 1000 person-years (95% CI 6.0 to 13.7). After at least 1 year of treatment, TZD monotherapy was associated with a 22% lower risk of all-cause dementia onset (HR 0.78, 95% CI 0.75 to 0.81), compared with MET monotherapy, and 11% lower for MET and TZD dual therapy (HR 0.89, 95% CI 0.86 to 0.93), whereas the risk was 12% higher for SU monotherapy (HR 1.12 95% CI 1.09 to 1.15). Conclusions Among patients with T2D, TZD use was associated with a lower risk of dementia, and SU use was associated with a higher risk compared with MET use. Supplementing SU with either MET or TZD may partially offset its prodementia effects. These findings may help inform medication selection for elderly patients with T2D at high risk of dementia. 
    more » « less
  4. Diabetes-related complications reflect longstanding damage to small and large vessels throughout the body. In addition to the duration of diabetes and poor glycemic control, genetic factors are important contributors to the variability in the development of vascular complications. Early heritability studies found strong familial clustering of both macrovascular and microvascular complications. However, they were limited by small sample sizes and large phenotypic heterogeneity, leading to less accurate estimates. We take advantage of two independent studies—UK Biobank and the Action to Control Cardiovascular Risk in Diabetes trial—to survey the single nucleotide polymorphism heritability for diabetes microvascular (diabetic kidney disease and diabetic retinopathy) and macrovascular (cardiovascular events) complications. Heritability for diabetic kidney disease was estimated at 29%. The heritability estimate for microalbuminuria ranged from 24 to 60% and was 41% for macroalbuminuria. Heritability estimates of diabetic retinopathy ranged from 6 to 33%, depending on the phenotype definition. More severe diabetes retinopathy possessed higher genetic contributions. We show, for the first time, that rare variants account for much of the heritability of diabetic retinopathy. This study suggests that a large portion of the genetic risk of diabetes complications is yet to be discovered and emphasizes the need for additional genetic studies of diabetes complications. 
    more » « less
  5. null (Ed.)
  6. Abstract Aims The association of glycemic variability with microvascular disease complications in type 2 diabetes (T2D) has been under-studied and remains unclear. We investigated this relationship using both Action to Control Cardiovascular Risk in Diabetes (ACCORD) and the Veteran Affairs Diabetes Trial (VADT). Methods In ACCORD, fasting plasma glucose (FPG) was measured 1 to 3 times/year for up to 84 months in 10 251 individuals. In the VADT, FPG was measured every 3 months for up to 87 months in 1791 individuals. Variability measures included coefficient of variation (CV) and average real variability (ARV) for fasting glucose. The primary composite outcome was time to either severe nephropathy or retinopathy event and secondary outcomes included each outcome individually. To assess the association, we considered variability measures as time-dependent covariates in Cox proportional hazard models. We conducted a meta-analysis across the 2 trials to estimate the risk of fasting glucose variability as well as to assess the heterogenous effects of FPG variability across treatment arms. Results In both ACCORD and the VADT, the CV and ARV of FPG were associated with development of future microvascular outcomes even after adjusting for other risk factors, including measures of average glycemic control (ie, cumulative average of HbA1c). Meta-analyses of these 2 trials confirmed these findings and indicated FPG variation may be more harmful in those with less intensive glucose control. Conclusions This post hoc analysis indicates that variability of FPG plays a role in, and/or is an independent and readily available marker of, development of microvascular complications in T2D. 
    more » « less